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Summary

During the period of the grant our group has been using super-
computers and parallel machines to solve important,large and real-
istic problems. A distinctive characteristic of these problems, apart
from their sheer size, is that they required the development of new
algorithms which will be useful for other mathematical and physical
problems, as well as for improvement of computer performance and
reliability.

1. Multifluid code.

Milestones.

This code, the result of years of development and testing, realized
its full potential when implemented in a parallel environment. The
multifiuid code in two and three dimensions (plus time) is currently
running on the IBM GF11 parallel supercomputer — this machine has
576 processors, and reaches has a peak performance of 11.2 gigaflops.
To the best of our knowledge, we are the first group to achieve stable,
long-term (30,000 step) multifiuid computations on a 100 X 100 X 100
grid, including chemical reactions and associated energy release. An
efficiency of more than 70% of the GF11’s performance was realized
in these computations.

Technology Transfer:

Quite aside from the general scientific utility of a complex multi-
fluid code, our work serves an important purpose in the day-to-day
operation of the GF11: as an operating code which offers a compre-
hensive test of the 576 processors and interconnects it is routinely used
for diagnostics of the machine. Another important part of the mul-
tifiuid code is its fast special function package, which was generated

with the help of computer algebra.
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2. Special Function Facility.

Milestones.

The principal investigators applied their new algorithms of sym-
bolic power series manipulations to construct a comprehensive and
efficient facility for evaluation of and computations with classical and
user - defined special functions. This facility allows the user to achieve
arbitrary precision in the calculation of a special functions everywhere
on the appropriate Riemann surface. Such a comprehensive facility is
of great demand in many applications. To mention a few:

1) in medicine, Radon transforms for CAT scans;

2) in theoretical physics, the special functions that arise in studies
of atomic, molecular and solid state problems;

3) in nuclear physics, neutron diffusion;

4) in astrophysics, radiative transfer;

5) in mathematics, modular functions and number theory.

This is the first time that such a comprehensive facility has been
developed in full generality, and also the first time that it was imple-
mented in arbirary precision.

Technology transfer.
The symbolic manipulation program described above will be avail-
able (with a user-friendly interface) in SCRATCHPAD (IBM) in 1990.

3. 7 and the solution of very large linear and nonlinear
problems.

Milestones.

The most challenging test of supercomputer performance is an
error-free computation that pushes the limits of storage and requires
weeks of CPU time. The computation of 7 is traditionally just such a
test of computer reliability. Numerical demands in the computation of
7 are severe: to compute N decimal digits of # with the best algorithm
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developed by the principal investigators, requires a large number of
convolutions (integer Fourier transforms, etc.) of size O(N). The prin-
cipal investigators have designed efficient self-verifying algorithms for
solving the large number of the numerical problems needed for such
tasks: convolutions of large arrays, polynomial and integer multipli-
cations of lengths in gigabytes, solution of linear algebra problems
involving matrices with hundreds of millions of elements, etc. Our
successful computation of more than one billion decimal digits of =
considerably surpasses the competing Japanese supercomputer effort
using Hitachi 820/80 and NEC SX supercomputers. Our computa-
tions were performed independently on CRAY-2 and IBM 3090 ma-
chines. What might have been lost in a reading of the nontechnical
publications about this effort is the importance of the algorithms,
techniques and codes developed by the principal investigators in the
course of computing x. For the first time a large problem that does
not fit into a supercomputer’s physical memory was solved without
loss of elapsed time. In our computation of =, for example, we rou-
tinely perform 256 megaword (=2 gigabytes) of error-free convolution
on cata residing externally on disks, or even on tapes. The potential
of this technique is difficult to overestimate, because it bypasses a
major roadblock in the efficient use of supercomputers: the size of the
physical memory of a supercomputer has often set an effective limit
to the size of the problem which it could efficiently solve.

Technology transfer.

The techniques described above are already in use: the size of
linear algebra problems that can be solved on an IBM 3090 are limited
only by the external storage capacity. The run time for the solution
of a dense 17K X 17K (17K = 17 - 2!%) system of linear equations
externally stored is 8.7 hours on 1 processor (out of 12), and requires
no large amount of physical memory.
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4. Truly Parallel Algorithms for the Finite Element Method.

Milestones.

The Finite Element Method is the most widely used computational
tool in industry for the solution of complex technological problems.
For the highest efficiency to be realized on a parallel computer it is
essential that the algorithms be asynchronous in character, i.e. they
must be decomposable into sets of processes with minimal explicit in-
terdependence. Algorithms designed for serial computers do not have
this property; our newly-created algorithms do. Moreover, they are
designed to operate with any number of independently programmable
processors.

We have implemented highly efficient asynchronous algorithms on
the memory-sharing multiprocessor Balance Computer and on IBM
3090 multiprocessor supercomputers. We have established experimen-
tally that the new algorithms produce almost perfect speed-up on
large-scale problems.
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Multi Fluid Flows With Chemical Reactions
and Tnermodynamical Effects.

GF11 Anplications.

In this section we present the description of our multifiud flow
parallel codes in 2D and 3D, and their implementation on IBM GF11
parallel supercomputer. We used our codes to simulate galactic for-
mation and evolution for a variety of initial conditions and physical
parameters. Problems encountered include optimization of the code
for machine execution, particularly: issues of communication, mini-
mization of the computational complexity of the code, increasing the
efficiency of the code for specific supercomputers, and representation
and visualization of resulting data. The mathematical part of the
development involved the generation of efficient algorithms for spe-
cial function evaluation and numerical quadrature, assisted by com-
puter algebra systems, as well as (stability) analysis of preservation of
isothermal solutions. The environment for supercalculation on GF11
is described. . :

The problem of the hydrodynamics of coexisting fluids is a prob-
lem of great contemporary interest. It has immediate technological
applications particularly for the study of the aerotheromodynamics
of hypersonic aircraft and the reacting gases of the ramjet or rocket
engines that will power them. The complexity of the problem chosen
far exceeds that of conventional fluid dynamics computations. The
particular examples computed were based upon a problem from as-
trophysics, the simulation of the formation and evolution of galaxies,
which have the same fundamental complexity but provide a more con-
venient data base for study the efficiency of algorithms. In our study,
chemical reactions within the first fluid produce the second fluid: the
second fluid provides a heat source for the first one, which would
otherwise cool by itself. The first of these fluids we identify with
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interstallar matter, and the second with stars.
Supercalculations on GF11.

The main characterization of supercalculations is the amount of
number crunching required to solve a particular problem. As an ex-
ample of a working definition, one can consider a calculation to be
super, if it takes more than a trillion (one Teraflop) of calculations
(floating or fixed point) to finish the job. Supercaiculations are those
that one cannot finish in a week of VAX time.

Supercalculations often result when large amounts of data must
be processed. This is particularly true in grid computations that rep-
resent a finite element or a finite difference realization of a continuous
physical model. The amount of data recalculated in these models as
time advances is determined by the total number of "cells” from which
the grid structure or finite elements are built. To approximate a con-
tinuous physical model, particularly in 2D or 3D analysis, the grid
is often very large. It now not uncommon to run computations for
grids with dimensions of the order 100 x 100 x 100 to 256 x 256 x 256,
even for scientists having no access to large amounts of supercomputer
time.

The supercalculations discussed in this paper were suggested by
K. Prendergast. These are large scale (both in data volume and in
run time) 2D and 3D astrophysical simulation of galactic dynamics.
Codes developed for this purpose are (three-dimensional) multi-fluid
codes, that are first order, explicit, flux splitting, and conserve mass,
momentum and energy (even in the presence of gravitational forces).

This Galaxy project is designed to construct computer models of
galaxies which embody the interaction of stars and gas in our own
galaxy, and which agree with the observed forms, colors, light dis-
tributions and internal motions of other galaxies. The number of
arithmetic operations per single test case (and we plan to accumulate
thousands of them) is quite large: it varies from about 60 billion for
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small 2D problems to 30 trillion for larger 3D modeling.

The first runs involve modeling of two-dimensional star and gas
interactions (without gravity) on hundreds of different cases. The
runs differ in the laws governing star formation and gas cooling. Each
case will show the physical processes at work in a representative piece
of interstellar matter, under a particular set of physical assumptions,
during a physical time corresponding to a substantial part (roughly a
quarter) of the age of the Universe. The purpose of this modeling is to
settle on the "best” parametrization of star formation and gas cooling
in the simulation of an entire galaxy (with self gravitation). Test
case runs so far show the growth of a foam-like structure comprising
cold clouds, filaments and hot bubbles in the simulated interstellar
medium. The whole structure evolves in time - stars are formed in
the clouds, heat and disrupt them, and eventually produce a bubble
of hot gas. The gas in each bubble expands until it impinges on
another bubble, and a cool, dense filament forms along their common
boundary. Cold clouds form at the intersections of filaments and
grow as gas drains along the filaments. Clouds continue to grow until
enough c*2rs have forred to disrmpt them, and the cycle starts over.
Other important components of the three-dimensional code include
a parallel Poisson solver (to find the gravitational field, given the
density) developed by R. Miller.

The particular supercomputer used for these calculations is the
IBM GF11 experimental paraiiel machine, described below. Code de-
velopment was targeted for this machine, but at the same time the
structure of the code was adopted to suit a large class of modern
vector and parallel supercomputers. To compare results and perfor-
mance, runs of the Galaxy code were carried out on a variety of more
conventional machines.

One of the consequences of calculation is the need to interpret and
display a vast amount of data representing galactic simulations. For
this purpose several graphics programs were created to visualize the
dynamics of galactic evolution in space and time. One of the fastest
methods in practice turned out to be a display of random sampling of
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the mass (density) distribution of stars and gas (interstellar matter)
with proper color coding. This representation allows one to achieve
a near-animated effect for a 2D time evolution with modest means
and minimal storage requirements. In 3D case, animation effects are
possible only with a modest sampling displayed on a computer screen
(several thousand of sample points). Conventional methods of visu-
alizations of 2D data (landscapes, etc.), and new means of grapkhic
representation of 3D data were implemented as well.

Successful realization of Galaxy astrophysical computations on
GF11 was accomplished due to an efficient code generator for this
machine, which turned out to be satisfactory for the development of
a structured scientific code on GF11 in a high-level language form,
even in the absence of a conventional FORTRAN complier. Other
examples of successful supercalculations performed on GF11 are also
described below. Programming efforts were a joint effort with IBM
Research, particularly with M. Denneau and Y. Baransky.

1. Basics of the Code.

The basic hydrodynamical code was constructed by exploiting the
well-known fact that the equations of hydrodynamics are moment
equations of the Boltzmann equation

DfjDt = (df /dt)con

When collisions are frequent, the (mass) distribution function f is
never very different from a Maxwellian, and corsequently both sides
of the equation are in some sense small, except in shocks or contact
discontinuities. We can construct a useful hydrocode by making the
right and left sides alternately zero. Suppose we make Df/Dt = 0
for a short time r; this implies that in the absence of external forces

fir —ur,u,t + 1] = f[r,u,t|,
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i.e. each particle moves in a straight line of constant velocity. If
at time t we start with a uniform density of mass, momentum and en-
ergy within each cell of the grid, we can construct a (unique) uniform
Maxwellian distribution function f™{r, u,t| having these densities f¥
for each cell. The flux of any quantity Q from one cell |i] to a neigh-
boring cell [i+1] across the boundary separating them is

/f,MQ-u-ndu.

By letting @ = 1,u and u?/2 + h, where h is the internal energy
of 2 molecule we can find the flux of mass, energy and momentum
from [i] to [i+1]. Analogous fluxes of these quantities from [i+1] to
[ij are computed using f,. The total change in mass, momentum
and energy in each cell in time t can therefore be computed from the
geometry of the cells and f¥(t). Of course, during the time interval 7
the distribution function changes from the original Maxwellian form so
that |df /dt|.ou, originally zero, is (generally) a nondecreasing function
of r. Since the collision term must be small in the hydrodynamic limit,
we restart by recomputing the parameters of the new Maxwellian fM
at time t + 7 from the new values of mass, momentum and energy in
each cell. In practice the time step 7 is chosen to satisfy a Courant-
Lewy-Friedrichs condition. The flux integrals for an exact Maxwellian
fM involve error functions, which can be expensive to compute, and
are not necessary for many problems. The performance of the code
does not seem to be adversely affected if fM is replaced by a function
g™ having the same first three moments with respect to u as f™.
We have used at various times weighted sums of three and four delta-
functions, as well as a parabolic approximations in u for ¢¥. More
general higher order polynomial "entropy” approximations P,(z) are
described below.

If we adopt 6-functions for g™, we get a code closely related to
the so-called "beam scheme”, which is straightforward and efficient
on scalar machines, particularly for one- and two- dimensional com-
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putations. However, a major drawback of this scheme for large scale
computations is the need for large number of scratch working arrays
- for the problems we studied one needs 5 extra arrays per each data
array (5 beams) in 2D and 6 scratch arrays per each data array in 3D.
This amount of storage is unbearable even for large machine, [e.g. in
2 fluid computations one needs at least 10 input /output data per cell
- 6 beams make the amount needed for physical storage unbearable
for a 200 x 200 x 200 grid)|.

The total amount of computations with the beam scheme is fairly
large. We counted the number of arithmetic operations in the 2D
case. (Not to be confused with cycle count in actual execution on any
machine):

To update the density, momentum vector, and energy using a
beam scheme one needs

154 multiplications

131 additions

2 divisions

and 1 square root

per cell. Usable grids for galactic simulations start at 100 x 100
in 2D. In problems we were interested in the number of discrete time
steps needed varied between 104 to 105. ‘ ’

In the 3D case the beam scheme is inefficient because of the in-
crease in storage and number of operations per cell -the number of
data per cell increases because of dimension, and so does the number
of beams.

The worst problem with the beam scheme is an inherently unpar-
allelizable (or nonvectorizable) feature in the method. In this scheme
flux transfer occurs in a single direction to any of 8 neighbor cells in
the 2D case, and to 26 neighbor cells in the 3D case. As a result, the
direction of transfer varies from cell to cell and moreover, a single cell
can receive data update from each of 26 directions. Thus the process
of updating is unsynchronized, and greatly suffers in performance on
a vector hardware or any SIMD machine (a possible hit can be by a
factor of 4 in the 2D case and 14 in the 3D case). Another problem of
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crucial importance for a vector machine is the dominance of load/store
operations in the beam scheme versus floating point operations, which
prevents high efficiency execution on existing supercomputers.

The introduction of gravitational forces requires non-trivial mod-
ification of the code, for several reasons. The first is that we require
exact conservation of energy, now including gravitational energy. The
second is that the solution of Df/Dt = 0 is now non-trivial, as it re-
quires a knowledge of the trajectory of a particle in a potential field
for arbitrary initial conditions. The third complication is a matter
of some subtlety - it turns out that our freedom to choose a con-
venient substitute for the exact Maxwellian is completely lost when
gravitation 1is included in the code.

In our treatment of gravitational forces we have made the some-
what brutal assumption that the potential is constant in a cell - this
enables us to retain the constancy of mass, momentum and energy
densities (or equivalently, of the parameters of the Maxwellian) within
a cell. The motion of a particle in such a potential can found explic-
itly and therefore it is possible to conserve total energy "exactly”.
The flux of momentum across a wall between two cells with different
potentials cannot be computed in terms of classical functions for a
Maxwellian. It is here that we encountered the two integrals ¥; and
Y, (see next section), which are needed to compute the momentum
flux in a gravitational field.

It might be thought that one could completely avoid the use of ¥;
and YY1 entirely by using a different distribution function (perhaps
a maximum entropy polynomial) but this is not true. To see this,
consider the class of test cases furnished by the well-known result from
Statistical Mechanics that the distribution function in thermodynamic
equilibrium is

f = Aexp(—BE) = Aexp(—fm[ju*/2 + v)),

with A, B constant throughout the system. Consider for simplicity
a one dimensional problem for given ¥(z) and with periodic boundary
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conditions. It is easy to show that the conservation of mass leads
to a functional equation for the distribution function employed in
the computation, and that this equation must be independent of the
potential. The solution of this functional equation is a Maxwellian -
that is, only the exact Maxwellian distribution function can be used in
the numerical scheme if we insist that the code accept the isothermal
solution for an arbitrary potential.

We expect that an analogous result may hold for a number of
otherwise plausible codes if there is a gravitational field. Even so,
the consequences may be less devastating than would appear at first
sight, since most problems are not run to thermal equilibrium.

2. Special Functions Evaluations in Astrophysical Codes.

Large, robust, 3D fiuid dynamics, plasma physics and astrophysics
codes sometimes have high computational complexity per cell, because
of special and elementary function evaluations needed for recompu-
tation at each discrete time step. While elementary function evalua-
tion is often efficiently performed by a supercomputer (e.g., IBM or
CRAY specialized scientific libraries), it is inevitably slow compared
to basic arithmetic operations. [Division or taking a reciprocal has
to be considered on most supercomputers as an elementary nonprim-
itive and slow operation]|. Computations of special functions, such as
the incomplete Gamma-function, the error function, Besse! functions,
etc. needed in many supercalculations are usually based on standard
polynomial or rational function approximation (typically uniform ap-
proximations) schemes. These computations tend to dominate many
specialized codes.

In the code we were interested in, nonprimitive operations in-
clude large number of divisions, square roots, exponents, trigono-
metric functions, error functions and integrals of their combinations.
The only way to avoid a large number of special function evalua-
tions is to change the physical model. One such remedy, presented

I-8




above, is the beam scheme, in which the Gaussian distribution is re-
placed by a sum of delta-functions. While this is quite satisfactory
in aero/hydrodynamics computations, gravitational effects (or effects
of other potential fields) cannot be simulated with this approxima-
tion, as explained above. Moreover, the operation count in the 3D
beam scheme is actually larger than in a 3D code using error func-
tions. Since special functions are needed, efficient methods of their
computations have to be used. Many of these special functions (like
integrals in the gravitational codes) depend on several parameters,
with markedly different behavior in different regions. Traditionally
such integrals were evaluated using numerical integration techniques
and optimized packages. This made large runs of codes unfeasible,
even on supercomputers. We touch upon novel techniques of special
function evaluation for problems in astrophysics and physics, based
on code development using computer algebra systems, particularly
SCRATCHPAD (IBM).

First, a careful work was conducted in SCRATCHPAD to lower
the algebraic complexity of the polynomial and rational part of Galaxy
code. Let us give the basic count for chemistry / thermodynamics /
flux transfer part of the 2-fluid 3D code. In this code one considers a
general grid of the size Mx x My x Mz.

Updated physical data representing the state of the galaxy are:

density (mass),

momentum vector {3 components),

and energy (or temperature)

for each grid element (cell) and for each kind of matter: gas and
stars. If dark matter is included, there are 3 sets of such data per cell.

During each discrete time step all these data are recomputed.
Chemistry / thermodynamics and flux transfer require:

228 additions,

192 multiplications,

8 divisions,

2 square roots,

6 exponents,
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and 6 error function computations on single precision floats per
each of Mx x My x Mz cells of the grid.

For serious purposes, other than debugging, each of the linear
dimensions has to be at least 100 (values between 100 and 200 seem
to be optimal both from computational and astrophysical points of
view). '

The run time can be estimated as 104 to 106 discrete time steps
- iterations (in fact, only the a priory physical time in the evolution
of galaxy matters, this time, however, cannot be a priory bounded,
because the Courant condition establishes a nontrivial expression for
one unit of physical time in terms of a number of discrete time steps.

The complexity above does not take into consideration load, store
and interprocessor communication time. The memory interfaces are
very heavy and 18 arrays, each of the total grid size are accessed and
overwritten multiple times during the recalculation steps.

Our code currently is totally vectorized for single processor ex-
ecution. For multiprocessor run, the chemical and thermodynamic
parts of the code are split. Flux transfer interprocessor communica-
tion is slightly more involved and uses, in case of p- riodic boundary
conditions, modular arithmetic to represent tori as one dimensional
arrays. When self-gravitation and an n-body problem are added, in-
terprocessor communication gets more involved, and, in particular,
3D convolutions are performed on data spread across the processors.

All versions of the Galaxy code, including the spherical code, de-
veloped by Prendergast and Athanassoulas, require frequent evalua-
tion of exponential and error functions.

The error function referred to above is definad as:

erf(z) = 2/V/7 /: exp(—z*)dz.

High precision method of evaluation of erf(x), known for many"
years, were highly popularized by Henrici in his numerous papers
and books. Henrici divides the positive x-axis into 2 regions: x |
1.5 and x =; 1.5; near the origin one uses Kummer’s identity for
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the hypergeometric ; F; function and evaluates erf(x) from the power
series expansion at the origin and the representation

erf(z) = 2(z/v/T - exp(~2%) -, Fi(1;3/2;2%).

For larger x, one uses the complementary, erfc-function and con-
verts its asymptotic series at infinity:

erfe(z) = 1 — erf(z) = exp(—2?)/(zv/7) 2 Fp(1/2,1;-1/2?)

into a Gauss continued fraction expansion:

erfe(z) = exp(~2?)/(1-|"z+ 1/2|"z + 1"z + 3/2|"z + 2|  z).

For single precision computations (say, with a 24-bit mantissa), a
simpler scheme based on uniform polynomial approximation is well
known.

In the presence of a gravitational field, all local computations of
flux transfer, in addition to evaluation of exponents and error function
we require the evaluation of two integrals depending on two parame-
ters - the velocity and the local gravitational force. We express these
two integrals in the following form:

Yilale) = [~ exp(=(z = ) -2\~ ) e,

Ya(eld) = [: exp(—(z ~ d)?) - 2 \/(* + &) dz,

In the 3D code, per cell at each discrete time step, one has to evalu-
ate such integrals 12 times. By far, this is the most number crunching
intensive part of the Galaxy code. Sadly, library subroutines based
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on Hermite's numerical quadratures available for vector machines are
unsatisfactory for our integrands because of special behavior at the
end and, often, in the middle of the interval of integration. Tradi-
tional Romberg gives satisfactory results, but requires a large number
of evaluations of the integrand, particularly when there is a need to
increase the precision of calculations.

Studying the functions defined by the integrals above in SCRATCH-
PAD, we found that they can be much more efficiently evaluated from
their power series expansions, not unlike error functions. These in-
tegrals are related to hypergeometric integrals, and one can study
them as solutions of linear differential equations. In the complex
plane the two integrals above represent branches of the same func-
tion. These integrals satisfy a system of linear differential equations
in both parameters. Particularly interesting is an equation in one of
these parameters (a in Y;, and c in Y3), which is Fuschian of the third
order. Because of its relation to error function we call these solutions
spherical error functions.

Initial conditions that uniquely determine Y; and Y; are the fol-
lowing:

Yi(a =0jc) = ¢/2 exp(—c?) + (c? + 1/2) (\/7/2) - er fe(~c);
Yz(c = 0|d) = d/2 exp(—d?) + (d? +1/2) (/7 /2) - er fe(—d);

From these initial conditions, functions Y; and Y; are integrated

using the following linear differential equation of the third order:
63Y +2(2a? — 3)62Y — 2(2a°c* — 2a* + 54 — 4)6,Y ~ 4a¢* = 0,
where 6, = ad/da.

This is a Fuschian equation with only two singularities at a = 0
and @ = oo , and with a simple asymptotic behavior at @ = co. This
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allows for analytic continuation of Y along the real axis from a = 0
to the point of evaluation using our methods of fast analytic continu-
ation of solutions of linear differential equations based on recurrences
for coefficients of power series expansions, following algorithms and
methods from [1]. The corresponding routines were developed on
SCRATCHPAD. They boost the performance of integral evaluation
by a factor of about 10 compared to Romberg’s method.

[The new algorithm for evaluation of these and other similar inte-
grals are even more impressive for scalar execution. In recalculations
there is no need to analytically continue a function from the origin,
but it can be continued only from the last evaluation place. This sig-
nificantly decreases the degree of polynomial approximations almost
everywhere. On vector and SIMD machines, of course, such varied
degree of approximation is more difficult to implement.)

Sometimes physical models have to be adapted to the existing com-
putational environment. While exponents and error functions can be
computed in any environment, some machine perform worse than oth-
ers. GF11 has a hard time at evaluation of exponents and will waste
a large number of floating point operations in doing so. This and sim-
ilar problems in any other vector or parallel machine increase interest
in simpler models of solution of the Boltzmann equation than the one
tried before. We used SCRATCHPAD to find such explicit models
and to develop the corresponding algorithms. We briefly describe one
that gave results numerically close to those of rigorous models, in the
absence of gravity. Our approach was to maximize the entropy

=—/ p-lnp dz

of the distribution function p (subject to a few constraints that
fix first moments of p). A well known solution to this problem (in
the multidimensional case as well) is given by the Gaussian distribu-
tion. We ask for the maximum of entropy over the class of polyno-
mial functions of bounded degree. This leads to a nontrivial system
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of transcendental equations on the coefficients that we analyzed in
SCRATCHPAD. Such polynomials and their integrals can be used
instead of exponents, error functions and spherical error functions. A
particularly interesting sequence of such polynomials discovered by us
is given by

p(z) = Aa(€2 — 2})" : —cn < T < Cp,
¢ =2n+3,
A, = (2V2n +3)7 (20 + 1)!/n.

The first two even moments of p are 1, and the entropy is
Sn = —log(2¢,) + log((2n + 1)!/n!?) + 2nlog2 + nG(2n + 2),
where G(z) = ¥(z + 1/2) — ¥(2/2), and ¥(z) = (d/dz) logI'(z).
S approaches, as n grows, the entropy
-1/2(1 + In(27))
of the Maxwell-Boltzmann distribution function

exp(-2/2) / V2r

3. Code Optimization.

Our codes were prepared for runs on large vector machines or
parallel SIMD machines (even more so on MIMD machines).
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The 3D code Galaxy consists of several stages. If the number of
processors is not too large (namely less than N?, where N3 is the grid
size), all computations per cell are local. Interprocessor communica-
tion is needed only in three parts of the code:

a) to synchronize the time steps from the Courant conditions, i.e.
to determine the temperature of the hottest cell (via binary tree or
any of its implementations);

b) to transfer fluxes from the boundary of the subgrid occupy-
ing a given processor to a boundary of a neighbor subgrid (possibly
occupying another processor);

c) in the computation of self gravitation effects, the Poisson equa-
tion is solved locally at in each processor separately, but cyclic trans-
position of the whole grid ( z — y — z — z) is performed on the
whole machine. In complexity this operation is very similar to the
transposition of a matrix spread amongst processors.

All communications are negligible in number compared with op-
eration count and with the volume of memory transfers within single
processors. Local operations per processor (e.g., in the case when the
whole grid occupies a single processor) are completely vectorized with
the length of vectorization equal to the total local grid size, and not to
the linear dimension, as common in ordinary fluid codes. This gives a
very efficient performance on vector machines with long pipes or high
latency.

Interesting problems occurred during the development of the code.
For vector machines, the performance of a purely vectorized code
was never efficient, because of the staggering number of load and
store operations occupying valuable cycles. For machines with large
register files (such as GF11, which has the total of about 150K words
of register file locations and nearly 36 Mbytes of SRAM locations in
the machine), breaking the code into a collection of vector macros is
inefficient. That is why, using SCRATCHPAD two different versions
of the code were developed for the GF11 code generator.

I. Vector code. Here a collection of about 20 vector macros, not
unlike the classical SAXPY routines - multiplication of a scalar by a
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vector plus another one vector - formed the bulk of the code. De-
pending on the architecture of the machine this may or may not be
an optimal organization (on IBM 3090-VF in view of large memory
traffic that cannot be avoided, nearly 30% of all cycles were loads
/stores).

II. Vector to Register Code. Code is still totally vectorized, but
is built for machines with large register files and aims at the reuse of
local variables to reduce the memory traffic.

For such machines as GF11 this is very important, because load
or store can occur while floating point operations are performed. Our
code thus avoids any hit from memory - to register - to memory traffic,
and the code approaches its peak efficiency.

Though versions I and IT amount only to polynomial (algebra) ma-
nipulation and in principle can be performed by hand, SCRATCBE-
PAD was very helpful for us in the algorithm development. We cannot
prove that the total algebraic complexity of our code within a given
physical and finite element model is minimal, but it nearly halved the
complexity of the code we started from.

Earlier versions of the galactic code, describing the chemistry
and thermodynamics, were described by Chiang and Prendergast [2].
Runtime for a 100 x 100 2D code took 10 hours of CPU time on an
IBM 3081. Our code for the same problem on IBM 3090 takes about
an hour. Unfortunately, to study models and compare with observa-
tions, several thousand initial conditions in the 2D case and several
hundred in the 3D case have to be run. A slightly bigger dedicated
machine is needed and such a machine is GF11.

4. The GF11 Parallel Supercomputer.

The GF11 parallel supercomputer, designed by M. Denneau, was
built in Thomas J. Watson Research Center of IBM for purposes of
large scale scientific computing. The machine consists of 576 pro-
cessors organized in a modified SIMD architecture interconnected
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through a three stage Benes network. Each processor contains a 256
word Register File, 64 Kbytes of high speed static RAM, 2 Mbytes
of dynamic RAM, and is capable of 20 Megaflops. The full machine
with over 1 Gbytes of DRAM is capable of a peak 11.52 Gigafiops.
The machine has also two special features which circumvent some of
the limitations of SIMD. First, each processor can be processing a
different variable or array. And second, a set of 8 condition codes can
be set as a result of a computation. These codes can then be used
to selectively control processors based on results of computation (i.e.,
for finding the maximum of an array, as above).

The switching network of GF11 can realize any permutation of
the 576 processors. It can also realize more general mappings. Switch
settings are loaded from a table of 1024 precomputed settings. These
settings are computed at compile time and remain constant through-
out program execution. Each processor can send and receive a word
every 4 cycles.

The code generator package for GF11 underwent several stages of
development. At an early stage, to assist in efficient utilization of
GF11 for the execution of fully vectorizable code, the code generator
was transforming " vector macros” into bursts of microcode. ”Vector
macros” consisted of vector do-loops of a single subroutine. Long vec-
tor loops helped to alleviate inefficiencies due to latencies in the float-
ing/fixed point operations, and interprocessor communication. While
it made possible efficient execution of vector codes on GF11 (particu-
larly, in those cases when floating point additions and multiplications
were balanced, long vector subroutines can reach nearly 100% of GF11
utilization), it hides an advantage of GF11’s large SRAM and Register
File. The current code generator can compile efficiently any properly
submitted code, suitable for SIMD execution.

Initially the GF11 machine was tested on traditional "benchmark-
ing” codes, to demonstrate its functionality, like multiplication of
large matrices spread amongst the processors. Simultaneously with
final stages of hardware trouble-shooting, important scientific prob-
lems were looked at to choose as first codes to run on GF11 using the
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developed code generator. The first project, was the implementation
of factorization programs and primality testing. These problems are
characterized by high complexity, and, therefore, are used in modern
encryption protocols. For example, factoring a 70- digit number can
take 10 hours on CRAY. For a 90-digit number, the factoring time
jumps to about 10,000 hours of cumulative CPU-time on the network
of SUNs. Better parallel algorithms can improve factorization time,
and were adopted for GF11 architecture. This part of work was based
upon theoretical research {4]. The first stage of the factoring package
is now fully operational on GF11, with performance depending only on
availability of run time and processors. This number-theoretic work,
in addition to its applied interest, is of importance to algebraic geom-
etry because of the use of Abelian varieties and new fast interpolation
algorithms. Despite the complicated structure of factorization pack-
ages (that include a comprehensive multiprecision arithmetic package
developed for GF11), the capabilities of GF11 were utilized at almost
90% without any compromise in the algorithmic structure of the code!

The Galaxy code, embodying all the complexity and instability of
a multi-fluid hydrodynamics codes with chemical and thermal interac-
tion between fluids runs on GF11 with an efficiency close to 80%. Its
execution on a part of GF11 available to us at this time brings a sus-
tained rate of execution of the Galaxy code to about 5 Gigaflops. One
can run simultaneously up to 500 different two-dimensional Galaxy
simulations on GF11, or a few three- dimensional problems (with dif-
ferent initial conditions and different laws of star formation and gas
cooling).
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Contributions To Symbolic Computations.

During the period of the grant much of the work of the Princi-
pal Investigators has been devoted to the development of computer
algebra programs, packages and their applications in real large scale
mathematical and scientific computational tasks. In the PI's work,
computer algebra has been used in a multitude of ways beginning
with a complete programming environment. One can customize a
sophisticated computer algebra system to serve as an interactive in-
terpreter/computer environment for symbolic debugging and program
generation. This way, a program of moderate size can be created and
debugged starting only from the basic algorithms, customized for a
given architecture, and optimized in complexity and performance us-
ing symbolic manipulation.

This use of a computer algebra environment was crucial in the
development of the first codes to run on the IBM GF11 parallel su-
percomputer. This machine with 576 20-megaflop processors with
a modified SIMD architecture has no compiler in the conventional
sense of the word. Performance optimization requires a very specific
sequence of floating point operations/communications and individual
processors have a very long pipe, (of 25 cycle latency). A specific order
of operations can change the performance by many orders of magni-
tude. In preparing the factorization codes and the multifiuid Galaxy
codes for GF11, we had to optimize several crucial subroutines ~ the
bignum operation and the fast numerical integration of special func-
tions. The algorithms themselves were derived as a part of our general
research in computer algebra implementation, The bignum multipli-
cation is the result of our new complexity studies, and our new algo-
rithms were derived with the help of symbolic computations on high
genus algebraic curves [5], [6]. Similarly, new fast algorithms of special
function evaluation were initially derivea for use in SCRATCHPAD
and can be symbolically generated. With these tools available, using
SCRATCHPAD as an environment, the whole multifiuid galaxy code
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was reduced to about 100 lines. (Both for the FORTRAN version and
for the GF11 code generator). However, to increase the efficiency of
execution on GF11, a large number of automated variations in the
algebraic part of the code had to be tested. Without the SCRATCH-
PAD environment, this would have been virtually impossible. As it
stands, the efficiency of our code on GF11 (the proportion of cycles
used for floating point operations) is between 70 and 80%. | A primary
reason for this is the simple excess of additions over multiplications
in the algorithms; GF11, as a CRAY and other supercomputers, is
100% efficient if there is multiplication/addition every time.]

The development of new computer algebra algorithms, programs
and packages was our primary occupation in the symbolic manipu-
lation field. The particular computer algebra system with the best
structure, and potential for supercomputer use is IBM’s SCRATCH-
PAD. We participated in the development of this system, and in the
design of its parts, including the graphic interface. Two groups of
algorithms were developed within SCRATCHPAD as symbolic tech-
niques, and were used by us in large computational projects.

1. Fast algorithms of integer and polynomial aperations.

A basic building block of a computer algebra system is arbitrary
length integers and polynomials over integers. Their efficient handling
determines the overall performance of the system. The problem of
fast integer and polynomial multiplication is closely connected with
the general problem of fast convolution over various rings and felds.
This class of problems is a wel] defined area of complexity theory with
a history of successful algorithm devclopment and application. For a
comprehensive exposition see Winograd (7|. Applications to specific
integer and polynomial algorithms are well described in Knuth [8].
Our interest is in purely integer or modular convolution algorithms.
We have developed a wide class nf fast polynomial multiplication and
convolution algorithms based on the interpolation of multivariable
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meromorphic functions on algebraic varieties. These new algorithms
are of particular practical importance for Riemann surfaces of high
genera algebraic curves uniformized by congruence subgroups. Our
new fast multiplication and convolution algorithms over finite fields
are closely related to algebraicogeometric Goppa codes (9], {5], [6].
Some of our results are summarized below in Appendix 2.

One of the primary complexity results here is the proof of the linear
multiplication complexity ug(n) = O(n) of the cost of polynomial
multiplication of polynomials of degree n over a finite field K. In
many cases we have established tight upper and lower bounds on
multiplicative complexities.

For integer and polynomial multiplication algorithms over Z we
have discovered new algorithms improving Schonhage-Strassen multi-
plicative complexity bounds. For moderate word sizes, specific groups
of algorithms were found, lowering the overall complexity (i.e. the to-
tal number of primitive operations). These algorithms were applied
by us for a range of integers of up to 2 billion decimal places (up
to a length of 2°! bits). An interesting phenomenon was observed:
thcre seems to be no general algorithm optimal in a large range of
word length. It seems, moreover, that the genera of algebraic curves
over which there are the best complexity algorithms grows with the
word length. In practical applications with an array length of about a
million, conventional modular DFT algorithms are quite efficient, but
above it new interpolation algorithms are preferable. For applications
of our algorithms see further in this Report.

We want to mention that, whenever error free calculations of this
nature (or any other image or signal processing) are critical, the use
of integer and modular algorithms is the best choice to verify the
correctness of the result and the functioning of the computer equi -~
ment. A prior statistical error analysis is simply inadequate, and can
in practice easily miss serious hardware bugs.

In addition to software development, a hardware specifically de-
signed to perform efficient long integer multiplication and error free
integer convolutions was designed and built. We refer to the "Little
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Fermat” machine which is a general 256 bit machine {14]. This ma-
chine, as its name indicates, was envisioned to be able to do efficient
computations in Fermat modular rings:

Z/Z(2" +1).

"Little Fermat” was optimized for operations on 256 bit (signed 256
bit) words over Z or modulo F3 = 2%%¢ + 1. It also has a flexible
programming environment. Long integer convolutions are performed
using DFTs over the modular ring Z/Z F; and using recursive convolu-
tion algorithms over these DFTs. The construction and debugging of
this machine took several years, and started with the help of Dr. Den-
neau of IBM Research and was conducted by S. Younis of MIT. " Little
Fermat” consists of a stand alone unit with six 25’ x 25’ wirewrapped
boards and over 5,000 ICs. "Little Fermat” is fully described in Ap-
pendix 4, based on S. Younis’ Masters thesis. This hardware project
was a one of a kind experience.

2. Differential Equation Solver And Fast Special Function
Facility.

The needs of computer algebra systems include arbitrary precision
numerical facilities equal to those available to applied scientists on
computers in fixed precision. Moreover, the demands of computer
algebra systems are much higher, because the user expects a computer
algebra system to integrate in closed terms, whenever possible, and to
deliver a numerical answer with arbitrary precision in all other cases.
For example, the user expects a computer algebra system to be better
than any mathematical physics handbooks, such as Abramowitz and
Stegun, Bateman Project, Gradsten and Rizick etc. A typical solution
is to encode the existing numerical algorithms into a computer algebra
system. Often this is impossible in arbitrary precision, for one has
to develop algorithms of polynomial complexity to substitute fixed
precision recipes. .
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This computer algebra need was our starting point in 1985. At
that time we had to develop algorithms for the computation of alge-
braic and special functions, and the fast computation of their series
expansion. Since then we have developed a variety of algorithms to
compute values of solutions of algebraic and differential equations, an-
alytically continued anywhere on the Riemann surface of this solution.
We refer to our papers {10], [11], {12}, [13], for descriptions of algo-
rithms for fast evaluation and analytic continuation, and examples
of applications of these algorithms. The cost of analytic continua-
tion does not differ significantly from the cost of multiplication. For
example, we have the following result:

Let y(z) be a solution of a linear differential equation over C(z},
regular at N-bit number z = z;,. Given a path 4 from z, to an N-
bit number z, (on the Riemann surface of y(z)) of length L, one can
evaluate y(z) at z = z; with the full N-bit precision in at most

O(M(N) - {log® N +log L})

steps (= primitive operations).

Here M(N) is the basic yardstick of the computations: the cost
of multiplication of N-bit integers [18]: ' '

M(N) = O(N -log N - log log N).

[This bound can be significantly reduced - from log® N to log N -
if y(x) has special arithmetic properties, like the E - or G - function
condition - satisfied by classical special functions.]

As it turns out, our algorithms are extremely efficient in fixed, ma-
chine precision as well. Instead of the slow, inefficient, existing pack-
ages and recipes for the computation of nontrivial special functions,
the evaluation of numerical quadratures or integrals of differential
equations, we use our analytic continuation technique. It gives high
precision (accurate for fixed precision) values and simultaneously an
approximation polynowriial (rational function) valid in a natural do-
main free of singularities. These schemes, in general, match in their
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complexity the hand made polynomial and continued fraction schemes
employed to compute elementary transcendental or a couple of well
studied special functions (error function etc.). Our schemes can be
applied to solutions of arbitrary algebraic or linear differential equa-
tions.

Among the applications of our algorithms we want to mention
the computation of all monodromy parameters of arbitrary linear
differential equations and systems. We are able to solve the direct
monodromy problem for linear differential equations with regular and
irregular singularities, determining all monodromy and Stokes ma-
trices. This allows us to solve in many interesting cases the inverse
monodromy problem - the reconstruction of a linear differential equa-
tion by its monodromy data. These facilities led us to interesting
applications in several fields of applied mathematics, computational
fluid dynamics, computational astrophysics, number theory, complex
analysis, Teichmuller spaces, mathematical physics and quantum field
theory.

In applied mathematics many applications are related to the ef-
ficient numerical construction of conformal mappings of a bounded
domain onto a unit circle (Reimann mappings). For this, Schwartz
- Christoffel differential equations are used in conjunction with our
solution of the accessory parameter problem. We also are solving
the uniformization problem for Reimann surfaces using the Poincare
- Klein relation between Fuchsian and Kleinian groups and the mon-
odromy of linear differential equations. Here, in addition to inter-
esting number theoretic applications (new irrationality proofs), new
results on Teichmuller spaces and accessory (Fricke) parameters were
obtained. This includes the disproof of the Whittaker conjecture on
accessory parameters and other results, see [13], [15], [11].

A new group of applications of monodromy programs is related to
recent numerical and theoretical efforts in quantum field theory. One
of the coveted prizes is theoretical and computational physics is the
determination of masses of observed elementary particles from the first
principles of QCD. This problem is under intensive numerical study
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using special purpose parallel supercomputers in several places around
the world. The method used here is the Monte Carlo integration for
a fixed 3-D plus time lattices. Reliable results are still years away
due to the true scale of the problem. New approaches arise from
modern string theory, and give one a chance to derive better numerical
schemes for the direct computation of functional integrals.

To demonstrate the effectiveness of these schemes one can look at
2 dimensional cases, where better analytical methods are available.
In the 2 dimensional case, the string theory models in 1/N-expansion
lead to the so-called matrix models (see Mehta [16]). Matrix models
allow physicists to count properly the contributions of graphs of ar-
bitrary genera in Feynman integrals. A properly scaled single matrix
model leads to a 2 dimensional quantum gravity model, and the mul-
timatrix system describes realistic 3 and 4 dimensional quantum field
theories.

The quantum gravity models are related to isomonodromy defor-
mation equations of Painleve type. This discovery was made by physi-
cists in Jate 1989 (in Princeton and Paris), and led to the expectation
that a closed forum solution could be obtained for the scaled limits
of partition functions. Unfortunately, physicists could not determine
free parameters appearing in the theory or, even, prove the existence
of the scaling limit.

The classes of matrix problems here are the following. For the
space Hy of N x N Hermitian matrices with the canonical measure
d#N(¢) = HdRe(¢.,) . HdIm(¢.-,~), put:

1.
Zn =/ dﬂN((ﬁ)c* iy Bar-92/2k
Hx

Zn =/ duN(¢)c‘ )Byei °‘u+1'l¢|““/(2k+1).
Hy
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In particular, in model 2, the problem is the limit of Zy for the
weight e*+**/> when N = 4¢P and t = -6 +¢*- T as ¢ — 0
(double scaling limit). It is also equivalent to the existence of the
limit of the Painleve II equation

A“:2A3+t'A+Q

for a =415, t = -6 +¢€*-T, A = €5+ ¢-A to the Painleve I
equation
Arr=6-A*+ T

as ¢ — 0.

Using our monodromy programs and [17] we were able to deter-
mine when the limit exists and the analytic properties of the limit.
This is a very interesting area of mathematical and theoretical physics,
but its most promising applications are in the numerical realization
of QCD computations.

Our programs for the solution of differential equations and special
function evaluation were prepared for SCRATCHPAD. SCRATCH-
PAD is becoming a widely available system and we hope that these
programs will be of use. They are not environment dependent and
can be used elsewhere. . A




Large Scale Mathematical Computations.

Overcoming Storage and I/O Bottlenecks.
1. Implementation of basic polynomial time algorithms.

Computers are useful for scientists and engineers only when they
perform tasks that people cannot. From this point of view, only
large computations matter. Particularly important and difficult are
those scientific applications that require large memory and storage
and hours, if not days of dedicated supercomputer time. Such com-
putations are a common feature of modern chemistry, theoretical and
applied physics, fluid dynamics, X-ray optics and data-processing, as
well as in number theory and other areas of theoretical mathematics.

Various classes of seemingly unrelated physical problems share
some basic mathematical algorithms and methods of computational
solution. Often, an important scientific problem is solvable in poly-
nomial time, but difficulties and various bottlenecks in realization
prevent practical solutions. For example, quantum chemistry is one
of the most computationally intensive tasks, in which the basic in-
gredients are familiar polynomial time solvable routines. Often, to
tackle a realistic scientific problem one has to work with data of sizes
previously considered prohibitive. For example, there is a barrier in
modern computers set by 32 - bit addressing, which is already recog-
nized as a major bottleneck in fluid dynamics and other applications,
where 4-gigawords of array space is obviously insufficient. Many prob-
lems for which efficient algorithms have been constructed, are still left
unresolved for lack of storage and speed of existing computers.

We describe here one group of application with a variety of scien-
tific ramifications, where both major obstacles in any supercalculations~
namely lack of storage and slow speed-were resolved to our satisfac-
tion even or IBM 3090VF. :

The goal of our computation was to apply newly developed (by us)
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algorithms of high-precision mathematical computation to the evalua-
tion of classical constants and functions for the purpose of amassing a
sufficient database for testing several classes of number theoretic and
statistical conjectures. The decimal expansion of 7 was a natural tar-
get because of its historic interest, large existing body of work, and
the ability to benchmark the performance of our algorithm against
the existing approaches.

The main building blocks of this computation are common to a
large variety of other high speed computations. These are the fast
algorithms of digital signal processing-fast convolution and fast lin-
ear algebra manipulations. From this point of view, the main part
of computation was, in a sense, similar to large hydrodynamics, seis-
mological or astrophysical simulations. A comparable size of a grid
for physical computation would be about 1000 x 1000 x 1000. The
necessary fast convolution algorithms are all descendants of the FFT
introduced by Cooley and Tuckey.

In our number-theoretical work there were several additional com-
plications, namely, error free and unbounded dynamic range demands
on our convolutional algorithms. Also, since the integrity of the result
was the primary concern, major parts of the computations were di-
rected towards result and data validation, verification and correction.

By far the largest part of the computational time in arithmetic
with arbitrary precision is spent on bignum multiplication. Other
than for relatively short numbers, the high-school method of multipli-
cation should be avoided. A conventional remedy is the use of FFT
algorithms to speed up the convolution of.digits of factors from which
the true digit of the result is reconstructed. It is better to speak of
fast convolution algorithms rather than FFT because often the foat-
ing point (complex) FFT is less efficient than its modular versions or
new fast convolution algorithms.

We look at bilinear form representations of fast multiplication
(convolution) algorithms. In all these algorithms one looks at the



product of two bignums written in the radix Rad:

n—-1 m-1
A=Y Ai-Rad', B= Y Bi-Rad,

i=0 j=0

(as polynomials in this radix) as the result of convolution of arrays

(A,) and (Bj):
C=AB=Z{Z A.--Bj}-Rad",

(that is, the polynomial product). _
The result of convolution (A) * (B) = (C), Ci = Xi,j=: Ai - By, is
computed via the bilinear form algorithm

f=H, A, §=Hn-B
for H, € Mijxn, Hn € Mixm; | 2 n+ m — 1, and with the result
c=G-Z

for G € M{nim)xi and 2, = Zo 'y for a = 1,.--,l. Herel > n +
m — 1 is the rank of the algorithm, and the whole algorithm can be
described as consisting of 3 stages: transforming A and B (by means
of linear transformations with matrices H, and Hy), dot-product of
the transformed results (z, = z, - yo), and retransformation (with a
matrix G).

In the case of FFT-like algorithms of fast convolution, the matrices
H,,H, and G are built from primitive roots of unity: H, = (wfj }s
H, = (w}/), G = (w"), and the resulting array C is the circular
convolution of length [ : Cp = .4 ;240) 4i - Bj. The advantage of
the FFT-like algorithms is their low complexity compared to that of
arbitrary linear transformations of the same size. Usually, ! is chosen
as a highly composite number, typically a product of powers of a few
small primes. Matrices H, G are defined over the ring § where [ is
invertible, and where there is a primitive root of unity w; of order .
The well-known Cooley-Tuckey FFT corresponds to the case [ = 2".
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There are usually 3 choices for § used in practice: 1) the complex
number field (with the precision of operation high enough to deter-
mine C; correctly taking into account the loss of O(log!) digits of
precision during the FFT computation-of course, if | is of the order
of a billion-i.e. one takes a billion length FFT, up to 60 bits can be
lost!); 2) products of finite fields having primitive roots of unity of or-
der ! (e.g. for | = 2" finite fields F), for primes p are of the special form
with p'= s-2" +1), with integers C, reconstructed via the Chinese Re-
mainder Theorem; 3) surrogate polynomial or special modular rings
like Z/Z - (2%° + 1)- -more or less Schonhage-Strassen [18]. In case 3)
one is using, strictly speaking, not a pure FFT algorithm but recur-
sive algorithm, where the modular FFT is used to lower the exponent
t. A more general approach to fast modular and integer convolution
algorithms is described in this Report and in the Appendix 2.

These new algorithms (1], {22] of ours use arbitrary algebraic
curves and varieties and represent all fast convolution algorithms as
interpolation algorithms on these varieties. Conventional algorithms
arise as special cases corresponding to interpolation on a protective
line or a circle.

1. Practical implementation of fast convolution algorithms is a
source of endless publications. In practice it is a difference in factor
from log N to loglog N in the speed of execution. For N of the order
10° this is a big difference.

An additional complication is a lack of physical memory to sup-
port computations except for largest Japanese supercomputers. In
our implementations of fast convolution algorithms, all arrays (in-
put, output and scratch) were externally stored on disks or on tapes.
64 megabytes was an upper limit for physical memory used, and we
attempted to reduce I/O overhead to 2 minimum. The difference be-
tween the CPU time and I/O overhead was due only to relatively slow
channels, and with fast channels was unnoticeable.

2. This approach - to store data externally and bring them di-
rectly to the cache, bypassing the physical memory - is old fashioned,
and was basically abandoned when supercomputers appeared. It is

1I1-4




clear, however, that supercomputer memory, at least in this coun-
try, is too expensive and far too small. This should not stop very
large computations. The price of 1 M byte of a hard disk is now
about $3 (in small quantities) and standard channels approach 3-5 M
bytes/second. Even a couple of such channels is good enough for large
jobs. For example, an IBM 3090 with 2 large disks one can solve linear
problems of size up to 17K x 17K without noticing any I/O overhead.
The runtime of a standard method (LU-decomposition) of solution
of such size systems of linear equations is about 8 hours with 100
Megaflop and sustained performance.

Once basic algorithms are available (of multiplication of arbitrarily
long numbers, etc.), one can with ease implement a variety of fast
number-theoretic and numerical algorithms.

One such algorithms is that of fast evaluation of special functions.
We quote one algorithm (“bit-burst”) of evaluation for the solutions
of linear differential equations:

Theorem 1 Let y(z) be a solution of a linear differential equation
over C(z), regular at N-bit number £ = zo. Given a path v from zo
to an N-bit number z, of length L, one can evaluate y(z) at z = z;
with the full N-bit precision in at most : '

O(M(N) - {log* N +log L})
bit-operations.
Here M(N) is the cost of multiplication of N-bit integers:
M(N) = O(N -log N - loglog N).

In practice one can apply these algorithms, but can the complexity
be improved? In fact, log® N seems to be excessive around N = 2%.
Complexity can be lowered if arithmetic of the linear differential equa-
tion can be invoked. Specifically, it is enough to demand that some
branch of y(z) has somewhere a nearly integral Taylor expansion with
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algebraic number coefficients. If that is the case, log> N can be re-
placed by log N. Linear differential equations with such remarkable
properties are subject to interesting conjectures. One of them, traced
to Siegel, plainly states that y(z) should be reducible to hypergeo-
metric functions.

Generalized hypergeometric functions are defined as power series
whose consecutive coefficients satisfy rank one linear recurrence with
coefficients being rational functions of indices. In the one-dimensional
case, classical notations are those of

. R — nzl(a‘l‘ )~ . _I_}i

mFa(@1y. .. ami by, ... bn; Z) ;A:‘o ————ﬂ;’=1(b,‘)N i
functions of parameters a;,b; : (¢)v = (¢) -+ (¢ + N = 1). In all arith-
metically interesting cases all parameters a;,b; are rational numbers.

Constants expressible in terms of values of generalized hypergeo-
metric functions can be called “rank two” constants. The scheme of
computation of (truncated) generalized hypergeometric series is based
on a simple lower triangular 2 X 2 matrix recurrence:

(5 o) = (52 L) (38 o)
ba €n ) \ b1 Cn-1 B(N) C(n) )’
for polynomials A(n), B(n), C(n) from Z[n].
Here ¢, is the numerator of the n-th coefficient, b, is the numerator
o thef n-th order truncated (generalized hypergeometric) series, and
@, is the common denominator (of all n terms in the truncated series).
Of course, this scheme should not be applied serially, but rather in the
form of the tree algorithm, by multiplying adjacent 2 x 2 matrices-this
is equivalent to summing adjacent terms in the truncated series.
Algorithm I. (divide and conquer.) Consider the following scheme
of computation of (rational number representation of) truncated gen-
eralized hypergeometric series:

(Z 2)=(1A5% C?o))'(éﬁfiiﬂ C(No—l))
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where A(-), B(-),C() € Z[}|, and f — % is the rational number repre-
senting /V first terms in the generalized hypergeometric series. Then
the simplest way to compute a,b and ¢ is the following:

Stage 1, (initialization). Put M, = (gg:; o) fork=0,...,N=-
1.

Stage 2, (multiplication). Put My = Mj, X My for k =
0,...,|N/2] = =1, and M, = My_, for k = (N —1)/2 for odd N.

Stage 3, (recursion). Put N = ceiling (N/2). f N > 1 go to
Stage 2, otherwise return (£°) = M.

While we recommend this algorithm for many practical imple-
mentations, it is not necessarily the best in complexity. More efficient
schemes based on these principles were developed for evaluation of
solutions of arbitrary linear differential equations by us [12-13], and
are discussed above in this report.

The first study of these classes of algorithms and of their extensions
needed to compute continued fraction expansions of b/a from the same
scheme was done by Gosper in 1972. Since then Gosper has extended
his telescoping technique [21] to accelerate convergence and to derive
new hypergeometric identities.

Bounds on the complexity of Algorithm I and any of its improve-
ments depend considerably on the arithmetic properties of the corre-
sponding generalized hypergeometric series. The worst case bounds
are summarized in the following.

Theorem 2 The cost of computation of O(N) terms of the continued
fraction ezpansion of a number b/a in

R EE

(for polynomial or rational A(-), B(:), C(), D(-)) is at worst
O(M(N) - log*(N +1)).

2. Number - theoretic algorithms.
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Let us return to computations of n. Special elliptic curves can
be used to construct fast schemes of computations of n, that can be
represented as hypergeometric identities. Such elliptic curves possess
complex multiplication.

The first major contribution to the theory of period relations
since Legendre’s time belongs to Ramanujan. According to Ramanu-
jan (23], for any elliptic curve with complex multiplication, there
are two linear relations between periods and quasiperiods (between
K,K' E,E') with algebraic number coefficients. Substituting these
two linear relations into the Legendre identity, Ramanujan arrived at
the expression of an algebraic multiple of 7 as a quadratic function
of a single pair of a period and a quasiperiod—of K and E. More-
over, Ramanujan presented this quadratic period relation in terms of
a single 3 F; function.

We prefer to derive all classes of quadratic period relations from
the most general one for the modular invariant J = J(r). For this
one uses Eisenstein’s series.

Er)=1- 2.3 ouy
k = B, “101:-1 n)-g

for op—1(n) = Z4nd*"?, and ¢ = ¢*™7. The standard théory of com-
plex multiplication states that for an arbitrary elliptic curve over Q
with complex multiplication by v/—d, and with periods wy,wy : 7 =
wy/wy € H, all ratios Ezn(r) : (wz/271)?" for n > 1 are algebraic
numbers. Ramanuian proved a new algebraicity statement for a non-
holomorphic (Kronecker’s) version of E,(r):

Lemma 1 If 1 € Q(v/—d), then I'(1)-invariant non- holomorphic
series Ei(7) 2
def LalT) -
82(T) Es(T)' ( 2(T) ﬂ.-lm(r))7
has an algebraic value from a Hilbert class field Q(v/—~d,J(r)).

If an elliptic curve E has a complex multiplication by v/—d, and
periods and quasi-periods w;,ws,”;,n2, Where 7 = w;/w, = (1 +
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vd)/2,d > 0,d = 3(4), and if g;,9s are Weierstrass invariants of E
that are algebraic integers from Q(v'—d, J(r)), we arrive at Ramanu-
jan’s quadratic period relations from Legendre identity (w,n; —wyn; =
27e):

3 :
wanaV ~d + wi( dz—zssz(r)) = 271,
2

Next one applies a special case of the Clausen identity:
2F1(1/12,5/12;1;2)% =4 F3(1/6,5/6,1/2;1,1; 2).
This equation representing quadratic period relations of elliptic curves
with complex multiplication in 3 F;-form is [25]:

(6n)! 1 _ (=J()? 1
E{ Qs B T = 7 QB = ()

Here r = (1++/—d)/2. The largest one class discriminant —d = —163
gives the most rapidly convergent series among those series where all
numbers on the left side are rational:

Z{c cnpe B (D0 (64032007 1
! (3n)!n!s (640,320)3* ~ 163-8-27-7-11-19-127 =
' (1)
Here
.= 13,591, 409
=

163:2-9-7-11-19-127
and J (ﬂ) —{5340,320)%. This is one of a few formulas that
Ramanujan missed.

Ramanujan provides instead of this a variety of other formulas

connected mainly with the three other triangle groups commensurable
with T'(1). These are

= _(6n)! z ..
+F2(1/2,1/6,5/6:1,1i2) = I =i |n13 123)
n=0

3F2(1/4,3/4,1/2;1,1; z) Z
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3Fz(1/2, 1/2,1/2;1,1;.‘:) = go 6 (2_6)n
‘ 1.1: S (3n)! (2n)! = .
3Fz(1/2,2/3,1/2,1,1,.‘r) ='§) = on (33,22) .

Representations similar to (1) can be derived for any of these se-
ries for any singular moduli 7 € Q(v/—d) and for any class number
h(—d), thus extending Ramanujan’s list ad infinitum. Ramanujan’s
own favorite on this list,

9801 — (4n)!
= 1103 + 26390n } —————, 2
221 nX=:O{ n} ni. (4 . gg)qn ( )
was used by Gosper in 1985 for his record computation of over 17
million terms in the continued fraction (and decimal) expansion of =.
The complexity

O(M(n) -log?n)

of computation of O(n) leading digits (or O(n) terms in the continued
fraction expansion) of a rank 2 arithmetic constant is the “worst case
scenario”.

This is typical for numbers, whose convergent series approximation
has growing factorials according to the rank two (telescopic) represen-
tation of a number, but convergence of the series is only geometric.
This was typical for early (pre 1973) formulas of computation of ,
such as

11

7 =16-tan” 3—4-ta.n'1

239’
(of John Machin 1706), which was used until 1981, with the series

approximation of tan~! z:
-] (_l)nz
tan"lz = )
2, s D7

- another hypergeometric function.
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Similarly, one can compute in a scheme of rank two, values of (ap-
proximations to) hypergeometric or special functions with complexity
O(M(n) - log*n). However, values of E- functions, such as e, yield
O(n -logn) terms in the decimal expansion within this scheme, while
numbers like 7 get only O(n) leading digits.

The first published algorithm that allow for computation of =’s
O(n) digit with complexity O(M(n)-log n) belongs to Salamin (1972).
It was also derived independently by R. Brent.

The Brent-Salamin method [24] is still superior from the point
of view of storage requirements to other similar recently developed
algorithms (derived from modular equations by Borweins).

All these schemes have to be run with a full precision (even plus
extra O(log n) digits) to achieve O(n) digits in .

Unlike such “floating-point” schemes (but, in these schemes, con-
trary to Newton’s there is no “error-correction” on the next iteration),
the telescoping algorithms of rank 2 (or higher) allow us to add more
terms, or digits, to the expansion at any moment.

Salamin-Borwein schemes were used by the Japanese mathemati-
cians Kanada and his collaborators, and by D. Bailey to establish
record 7 calculations (Kanada-Tamura 16 MD (1983), D. Bailey 29.36
MD (1986), Kanada 134 MD (1987), Kanada 201 MD (1988) [26]).

However in 1985 the record belonged to Gosper, who used only a
Symbolics workstation, and a telescoping algorithm of rank 2.

We have calculated by May 1989 480 MD digits of v using iden-
tity (1) for a multiple of 7 and a “telescoping” rank 2 method, with
congruences to supplement computations with verifications.

Code was prepared for 3 mchines:

1) GF 11;

2) IBM 3090-VF;

3) CRAY 2.

The 480 MD computation was completed on IBM 3909 and on
CRAY 2 in MSC.

By the end of July, 1989 we had computed over 1,011,000,000
digits of = on IBM - 3090 VF [27]. We stopped our calculations in
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September with over 1,130,000,000 decimal digits of =.

These last computations were performed at the T.J. Watson IBM
Research Center, Yorktown Heights, on IBM - 3090/200 and IBM -
3090/600.

There are some applications of explicit computation of . E.g., we
used it to prove that for all rational p/q with integral p, ¢ we have

Ul p

I%‘E > g

whenever |g| > 1. For this approximation to 7/+/3 were checked below
101,

3. Computational environment. Performance and error
protection.

Computational requirements for m and other similar supercalcula-
tions:

a) a large work area accessible during the computation; in our case
one Gigabyte of data was input/output with 4 Gigabytes of scratch
space. The total work area was between 4 to 6 Gigabytes (with 4
Gigabytes as a lower bound in the algorithm);

b) fast access to blocks of the full work area. The ratio of paged
storage to the number of computations performed per element was
relatively low-on the order of log N.

As a .onsequence of a) and b) the problem was clearly I/O bound.
An obvious solution, usually implemented for smaller computations,
is to run the whole problem in the physical (primary) memory. For
problems of our size it is unfeasible on any existing machine, because
even though the local workspace is slightly over 4 Gigabytes, all arrays
required to complete the job (including the final output) take almost
10 Gigabytes.

(These are rational approximations to 7 befcre conversion to float-
ing point decimal expansion and a couple of Gigadecimal constants:
rational approximation to 1/1/640320, and quotient and remainder in
the integer division).

l—5.793
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Similar I/O restrictions arise when one solves linear algebra or
grid problems of large size. Typical targets here are:

32K x 32K
dense linear problems or

1K x 1K x 1K

grids. In some of these cases there are more favorable I/O require-
ments (for example, in matrix multiplication or solution of linear prob-
lems one expects a higher ratio of operations versus size of paged
blocks).

With the help of Gordon Slishman (IBM Research) several I/0
protocols were tested and a couple of them were used: one under
MYVS and two under CMS and CMS/XA. Common features of usage
of these I/O are:

i) to treat disk storage as “scratch memory”, accessing blocks (ar-
rays) suitable for efficient vector CPU operations;

il) to have all I/O operations FORTRAN callable with minimal
use of assembler only inside I/O calls themselves;

iii) to place high emphasis on error detection/verification;

iv) to use the ability of parallel (programmable) I/O access to
improve I/0O performance.

This approach has an additional advantage, for it allows “people’s
parallelization”: when several jobs access the same storage it allows
for several user ID to work on different parts of the problem, and in
the case of MVS even to synchronize their operations.

The integrated environment of the 3090 mainframe provided an
ideal proving ground for testing a variety of options. Different op-
erating systems coexist and there are several efficient ways of using
them on the same problem.

For example, tape turned out to be a very economical and efficient
storage medium. The IBM 3480 tape system supports in realistic
conditions 2.5 MB/second transfer rate inside the application and
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holds over 200 MB per cartridge. If not for operators inconvenience,
the whole job coud be run with 9 tape cartridges attached to the
machine and changed during the course of computations (a total 30
cartridges/session for several sessions).

Instead tapes were used only for back-up and data exchange be-
tween operating systems. The primary storage was a 3380 disk sys-
tem. y

The peak performance of Slishman I/O routines on 3380 under
MVS was about 2.6 MB/sec. Here the basic data unit was the whole
track (or a cylinder = 15 tracks = 712KB). Arrays were paged in and
out of main memory in installment varying between 32K and 64K
words, delivering an average I/O performance under MVS of about
2MB/sec. On CMS different routines were used that did not bypass
a huge system overhead. On a congested day under CMS a single
disk was delivering 0.5 MB/sec. Still, several independent disks and
proper partitioning of data into “banks” — all by itself an interesting
integer programming problem - delivered sufficient performance.

The “true” time of CMS computations of 1 Gigadecimal expan-
sion of * was about 120 CPU hours. This count does not include
the I/O count (because the system barely registered proper timing);
the time for tape operations; failed sessions, aborted or discontinued
jobs; jobs with possible I/O problems; and time for the routine (algo-
rithm) development. As a time frame: to compute 480 million digits
took 5 months of development and computation; to complete over 1
Gigadecimal took 2 more months.

During these computations we were treated as any other batch job
user (and one knows what this means).

The ability to perform scientific computations on many Gigabytes
of data is very important for modern supercomputers. To give one a
feeling for an average problem, let us look at one example computed
using Slishman I/0.

A system of 17,000 of (full) linear equations (with dense 17,000
x 17,000 matrix and 24 different right hand sides) was solved. IBM
3090S took 8.7 CPU hours and 8.9 hours of elapsed time on a single
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processor, delivering about 104 Megaflop sustained. (The data of this
problem resided on 2 disks.)

In the course of a large scale computation, one can encounter the
following types of errors:

I. Hard(ware) bugs—in a fully simulated and debugged hardware,
one encounters only very rare (repeata.ble) patterns that can occur as
a result of specific combination of instructions.

II. Soft(ware) bugs-in addition to programmer’s errors, these are
compiler errors, usually occurring in new implementations of library
calls.

III. Hard and soft memory errors-relatively rare occurrences of
a 2-bit error in a large memory system, guaranteed to correct all
single-bit errors. When detected, such errors interrupt any running
computations. A truly horrible combination is a triple bit error, or a
peculiar physical damage to the memory core.

IV. More typical is an error in I/O, or in a massive storage device.
Large disks crashes and corrupted tapes are not just a nightmare but
a reality, that often occur in a multi-mnonth computation.

Protections can vary: one can run modular verification of all files
(more than just a checksum computation); if you can store everything
with extra redundancy, in excess of that provided by your hardware.
While local operation can be quite well checked this way, if one knows
the answer in advance (or at least can check it with an extremely
high degree of probability), one will be safer to run multiple modu-
lar checks. If a source of a mistake is a specific repeataole pattern,
chances are that a simple checksum check may fail to detect it.

For local operations we used several sets of primes to verify all
bignums operations modulo these primes, to bring any local error to
a probability below 10729,

4. Statistical analysis of number-theoretic expansions.

Why should one bother to compute 7 or run any similar super-
calculations? An immediate purpose is the hardware and software
testing—a crucial part of verification of a complex mixture of devices
and problems of super computer machines.

111-15




Also, we must emphasize the need of such calculations for the ben-
efit of number theory. Fixed-radix representations of classical con-
stants is largely an untracked field of diophantine approximations,
and it might be open to a better theoretical understanding with more
identities and numerical work. One can even argue that digits prob-
lems such a normality are easier to analyze than continued fraction
problems, because they are “additive” in nature, and arise from spe-
cialization of power series representation of functions.

Do we have enough information to start making some definitive
statements? We would like some more. Let us look at statistics.

A real number z = €16263... = T2 €|n - R™" in the base (radix)
R:¢ =0,...,R -1, is called normal in base R if for any | > 1
and any fixed sequence A = §;...6 of 0,...,R — 1 of length | we
have: limp.co 2Nn(A) = R™!, where N,(A) denotes the number of
the indices i, < 1 < n, for which: € ...€4i-1 = 6 ... 6. Borel (1907)
proved that almost all numbers are normal in all bases.

According to a folklore conjecture all irrational classical constants
(v/2,¢,7,e%...) are normal. Overwhelming numerical evidence sup-
ports this conjecture though no proof is known.

Still normality is not “true” randomness, and, following Kolmogorov
- Chaitin, no classical constant has a random sequence of its digits
(due to its relatively low complexity). What are statistical rules that
allow one to distinguish truly random sequences from expansion of
the classical constants? We think that one of such rules is that of the
iterated logarithm (Khintchine) and its generalization.

In this law, due to Khintchine, for almost all real numbers z,

lim sup E:‘=l -RT_L - €"(:':)
n~e \JEB=L. /mToglogn

and similarly for lim inf, with +1 replaced by -1. This law fails on
known artificially constructed normal numbers. E.g., it fails on the
best known normal number - Champerowne numbers (in which all
integers written down one after another), ¢ = .123456789101112-(R =
10).

= +1;
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The law of the iterated logarithm and its specializations suggest
to look at a random walk (Brownian motion) generated by sequences
of digits — an idea that was proposed as early as 1965 by R. Stone-
ham. Such a formulation allows one to construct many fractal objects
(landscapes, etc.) from “random” sequences, such as digit expansions.

We report some statistical data on a billion decimal digit expan-
sion of 7 below in Appendix 3, together with details of hypergeo-
metric identities and congruences needed in computations of classical
constants.

Stacistical observations of r (and some algebraic numbers) reveal
the following:

First, the decimal expansion of 7 in billion plus range passes with
flying colors all classic randomness tests: frequency, x?, pocker, arctan
law, ... etc.

Secondly, the iterated logarithm test leaves yet unresoived the
“generic” nature of r~we are not yet certain that visible deviations
from the law of iterated logarithms are statistically impressive. On
the other hand, we tested the iterated logarithm law on conventional
pseudorandom number generators: they all fail drastically (but in
different ways) well below their periods. i _

Thus, tentatively speaking, = expansion ”looks more random”,
than anything else man-made, but, perhaps, "not random enough”.
Practical importance of the use of Algorithms I in random number
generation and inscription protocols remain to be seen.

There is even a slight disagreement about the validity of the Chaitin
- Kolmogorov test for v. The basic formula for 7 is simple, but the
total complexity is a different issue: for example, Kolmogorov called
a set of N elements of low complexity, if it can be generated with a
program of total length log N. While the length of a 7 code is a cou-
ple of hundred lines, for its execution the full size O(N) storage has
to be available—we do not know how to generate a single (N-th) digit
of = without keeping somewhere O(N) storage of the previous digits,

(though our algorithm allows us to add N + 1 - st digit to previous
N)
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While it takes a delicate statistical analysis to distinguish a par-
ticular digit expansion from a generic one, it seems that looking at
their continued fraction expansions, classical constants can be easier
to distinguish from generic numbers. For example, this is true at least
for those classical constants, for which explicit continued fraction ex-
pansions are known. (Note that according to our conjecture, all such
constant are reduced to hypergeometric constants.)

This is the case of ¢ and ¢? and v/2. For other classical constants,
even very similar to these, no explicit continued fraction expansion is
expected. For example, this is the case of e* or e*. We can ask the
following question: What kind of continued fraction expansion of an
irrational number is “usual” and what kind is “unusual”?

We studied applications of the law of the iterated logarithm. 4

Let z = [0;a,,a3,...] for @i = @i(z) and z in (0,1). Then for
almost ali £ we have the Khintchine theorem

LN loga; — log K. (KK)

This “Khintchine” test is often too crude to distinguish a “mildly
unusual” number z from a “very unusual” number z. That is why
we suggest looking at a better form of Khintchine’s law. Namely,
according to the law of the iterated logarithm (or, rather, a version
of central limit theorem), for almost all numbers z in (0,1) we have:

. ¥ log{a;/K} — w2
lim SUPN— 4o W =K ’ (KK)

(and, similarly,
. log{a:/ K}
1 l-l (2)
iy ey R
for a constant K(® > 0. The only expression of K(3) we know is such

K 4 lim - / 21 0-(3 1? dz

N-ooo ~ log2(1+z)
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The expression (KK) of Khintchine’s law is a much better test
than the old (K) test. This is particularly clear for such “explicit”
constants as e? or v/2.

We looked at several classes of classical constants, such as:

e, et, m/+/2, 7/\/640320, /2 or other Brillhart cubic numbers.

Interestingly enough, the law of the iterated logarithm as applied
to continued fractions reveals statistical irregularities for many clas-
sical constants. To get the continued fraction expansion data one
should start with a decimal (or binary) expansion. The cost of con-
tinued fraction computation is of the same order as the cost of the
original computation of .

We suggest after a preliminary analysis of the data, that classical
(irrational) constants do not obey the modified Khintchine test. In
fact, a challenging problem here is to find a classical constant whose
continued fraction expansion looks generic (while for decimal expan-
sions normality is expected).

Conjectures of Siegel (see {27]) describe the class of arithmetical
constants defined by linear differential equations in terms of hy: er-
geometric constants. This class of constants we refer to as “rank
two constants”. While this class of constants (or functions) contains
many important arithmetical and geometric objects, not everything
of number-theoretic significance can be described in terms of linear
differential equations directly. In particular, one cannot claim that all
“explicit” continued fraction expansions of “explicit functions” are re-
ducible to the ordinary hypergeometric. For example, another group
of explicit continued fraction expansions arises from ¢g-basic extensions
of hypergeometric functions. (Among explicit continued fraction ex-
pansions arising in this context are Rogers-Ramanujan expansions,
and other g-basic fractions related to g-basic generalizations of Mc-
Donald’s identity.)

Recently, we found a new group of explicit continued fractions that
can be described as elliptic generalizations of both Gauss and g¢-basic
continued fractions. They are “explicit” in a sense that all element of
the continued fraction expansion are explicit functions of the index~
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theta functions of the index. In the degenerate case (when #-functions
are reduced to trigonometric functions), our elliptic generalizations
are reducible to g-basic continued fractions. (In the degeneration k% —
0 these continued fractions are reducible to Gauss’s hypergeometric
continued fraction for ,F; functions.)
Ordinary Gauss continued fractions have the form
2 Fi(a, b;¢; 2) @12 @22  GpZ

2 Fi{a,b+1;¢+1;2) 1+1+4+...1+...

with (a+n)(c—b+n)

Gans1 = 7 (e+2n){(c+2n+1)
(b+n)(c—a+n)
(e+2n—~1)(c+2n)
(This continued fraction and its specializations give very fast com-
putational scheme for many special functions.)

The next level of continued fraction identities is given by Stieljes-
Rogers expansions

G2p = —

oo 1 1% 2%k? 37 4%k?
/ en(u,k)e”™dy = —— — .
0 z4z4+ 2+ 24+ 2z 4.,
Our new elliptic generalizations of hypergeometric continued frac-
tions depend on five parameters. One of the simplest specializations
gives the following explicit continued fraction in elliptic functions of

the indices.

o
f Pt + 2)e ™ dz = — S =
0 T+ Bo - -—LT-S-!-B:—:.?;:

Here

Ca=(n+1)*(P(t) - P((n + 1)2));
B, = (n+1)¢(t) =¢((n+1)t) + (n +2)(s(t) +¢((n+ 1)t) — ¢ ((n +2)2)).
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IV. Parallel Algorithms for the Finite Element Method.

Existing finite element methods, algorithms and application pro-
grams have been developed in the milieu of the serial or single proces-
sor computer. Substantial efforts are currently being made to modify
their computational aspects in order to take advantage of the power
inherent in the newer generations of parallel multiprocessor comput-
ers. The parallelizing techniques being explorec ‘end to be derived
from or are closely related to serial concepts. Parallelism is difficult
to achieve from this direction. The present work develops and imple-
ments a new class of parallel algorithms for the finite element method
based upon the use of projections on finite-dimensional spaces. Pro-
jections provide a formal and general mechanism for decomposing or
partitioning a problem into a collection of smaller related problems
which can be treated in parallel.

The decomposition is based upon the ideas formulated by the au-
thors in ([1]-[4]) of recasting the finite element method into a collection
of mathematical projections of a given problem with each projection
defining an autonomous subproblem related in a well-defined manner
to other subproblems. Each subproblem is treated as a-process and
consists of independent computational instructions and required data
dependent upon other processes. The data dependence between pro-
cesses defines an interprocess communication network. Processes and
their communication network are the basic conceptual elements in
the parallel implementation. Once these elements have been defined,
physical processors (CPU’s) can be assigned to execute processes and
to implement the network.

1. Performance analysis.

Our algorithms can be programmed in a wholly asynchronous
mode and have been implemented and studied on a shared mem-
ory multiprocessor computer with up to 24 processors. On large test
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problems they have been shown to produce almost perfect speedup
and to be extremely efficient.

There are a number of ways to measure the performance of al-
gorithms designed to operate in a multiprocessor environment. One
of the most intuitive and commonly used measures is the so-called
speedup:

Ty( execution time using one processor)

(speedup)Sy = Tn(ezecution time using N processors)’

Perfect speedup, Sy = N, is obtained when a program runs N
times as fast when N processors are used as when only one processor
is used. Speedup is reduced by data dependencies, by communica-
tion and/or by synchronization overhead. Experimental results based
upon the algorithms were developed on a Sequent Corporation 24
Processor Balance 21000 computer at the Argonne National Labora-
tory. The timings were obtained by solving Poisson’s equation in a
rectangular domain. A simple rectangular element was adopted for
this problem. During execution, the main program reads the input
which includes the required data and the number of processors to be
employed. After the completion of the input, the main program dis-
tributes memory for variables and sets up the parallel system among
the employed processors. Once the solution converges, the main pro-
gram stops the paralle] system and writes the output file.

To test the effect of parallelism on performance, calculations were
conducted with varying numbers of processors and different size prob-
lems. Computed results were obtained from iterations which contin-
ued until the maximum absolute value of the projective residual com-
ponent was less than a prescribed tolerence. The most interesting
aspect of the performance is the speedup shown in Figs. (2) - (4)
comparing the theoretical (dashed line) and experimental (solid line)
speedups. Fig. (2) indicates the speedup obtained by solving a 60 x 60
grid with 57 partitions by the residual propagation scheme, in which
it can be seen that the parallel system provides excellent speedup on
different numbers of processors except on the example done by 23 pro-
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cessors for which the scaled ratio of 2.48 provides less than 90 percent
efficiency as seen from Fig. (1). This lower speedup can be improved
by raising the scaled ratio. Fig. (1) is a typical curve, in the case
of unit communication width, of efficiency vs. scaled ratio; it was
generated from experiments on the test problems. In all cases it was
found that once the scaled ratio exceeded about four, the efficiency
approached 100 percent. The results in Fig. (3) were obtained by
the mixed scheme for the same problem and it too shows excellent
speedup. Fig. (4) presents results obtained by solving a 100 x 100
grid with 75 partitions by the residual propagation scheme. In this
example, the minimum scaled ratio is greater than 3, and the mea-
sured speedup is very close to the theoretical one. These results show
that the parallel algorithms developed are highly efficient.

Parallel algorithms for finite element analysis in our approach
are based upon the concept of successive projection approximations.
The successive projection «."proach appears to be a powerful tool for
achieving parallel efficiency. The algorithms provide almost perfect
speedup within the range of processors (24) used in this study. The
method enables large problems to be decomposed into a number of
smaller problems which can be treated in parallel and can serve a
prototype for future development. The present work has developed
two computational schemes: the residual propagation scheme and the
mixed scheme. Both provide efficient parallel computations. The
mixed scheme accelerates the convergence rate but also raises the
computational complexity. In a system with a highly efficient method
for accessing the data in sparse matrices, the residual propagation
technique is faster than the mixed scheme. During the solution pro-
cedure, both schemes perform asynchronously so that no processors
are idle. A further enhancement has been the development of a data
storage method for a general sparse matrix which saves CPU time
and memory space. The parallel algorithms developed in this work
are clearly powerful and useful, but there still remain significant mod-
ifications that could make them even more versatile, i.e., alternatives
using overlapped projections or by modest changes for implementa-
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tion on message-passing machines. Computational experiments are
being conducted to assess the impact of such features on speedup and
storage.

2. Performance on an IBM 3090-300E VE.

Timing results were obtained on an IBM 3090-300E with 3 proces-
sors by using our parallel algorithms in ([1] - [7]). The test problems
were defined by a partial differential equation:

8%¢ 0%
Aa;; +35? +2=0,

in two different domains subject to the boundary condition ¢ = 0.
The performance details are shown in Figures 5 and 6.

The results in Fig. 5 were obtained by meshing the domain into
10000 linear rectangular elements and using the control parameters:
partitions = 12 and maximal relative residual < 0.000125. The results
in Fig. 6 were obtained by meshing the domain into 8200 linear rect-
angular elements and using the control parameters: partitions = 20
and maximal relative residual < 0.00125. Both results produced al-
most perfect speedup. However, a :/stem of more partitions requires
more iterations to complete the sc_.tion as discussed in ([1] and [2]).
The idle time in each task in both tables was according to wall-clock
time so that the idle times recorded were dependent on the system
loading. Thus the speedups indicated are conservative-they would
be even better if the multiprocessors were dedicated to a single job
execution. The results in Fig. 5 illustrate a rapid convergence, while
the second case was an example of a slow rate of convergence requir-
ing more iterations. Thus the speedup is independent of the rate of
convergence. '

The object of this research was to demonstrate the outstanding
performance of an IBM 3090 multiprocessor computer in executing the
parallel algorithms for the finite element method. The measurements
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of the performance are conservative because of the feature of time-
sharing. The real speedup would always be better if the entire machine
were available for a single job execution.

In parallel computing, efficiency is perhaps the primary concern.
But from a practical point of view, it is of some interest to compare
algorithms in terms of computing speeds (costs), e.g. a fast sequen-
tial algorithm compared with an efficient parallel algorithm. The
cost of a finite element problem is dependent on the solution strat-
egy which is generally categorized as either direct method or iterative
method. When using a direct method, the total computations can be
anticipated before computing while the cost of an iterative method
is dependent upon the rate of convergence and the desired accuracy.
Generally, an iterative method can be improved by introducing some
parallelism. Thus comparisons are difficult. The parallel algorithm
adopted in our research is an iterative method which achieved an al-
most perfect speedup for the example shown in Table 1 which was
solved in 50.45 seconds (including idle time) by 3 processors. The
problem was also solved by the conventional finite elemeni method
using the skyline solver (Cholesky decomposition) and using 1 pro-
cessor, and took only 49.27 seconds to solve the entire problem with
10000 elements. At a first examination of the computing time, it
would appear pointless to use the parallel algorithm with more pro-
cessors taking more time. However, a more careful study reveals the
following. Besides the computing time, the accuracy desired has to
be considered. The maximal relative residual occurring in the skyline
solver was 0.017 while the solution obtained from the parallel algo-
rithm was controlled by minimizing the relative residuals to be less
than 0.000125.

The parallel algorithm can obtain the solution in 18.82 seconds
with the maximal relative residual less than 0.0125 which is even
more accurate than the solution obtained from the skyline solver.
This shows that the parallel algorithm is actually far superior in this
example. Thus for combined computing speed and accuracy, the par-

alle] algorithm can be highly effective.
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